Show commands:
SageMath
E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 666.f
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
666.f1 | 666f4 | \([1, -1, 1, -7241, 238677]\) | \(57588477431113/78653268\) | \(57338232372\) | \([2]\) | \(1152\) | \(0.96920\) | |
666.f2 | 666f3 | \([1, -1, 1, -5441, -151995]\) | \(24431916147913/202409388\) | \(147556443852\) | \([2]\) | \(1152\) | \(0.96920\) | |
666.f3 | 666f2 | \([1, -1, 1, -581, 1581]\) | \(29704593673/15968016\) | \(11640683664\) | \([2, 2]\) | \(576\) | \(0.62263\) | |
666.f4 | 666f1 | \([1, -1, 1, 139, 141]\) | \(410172407/255744\) | \(-186437376\) | \([4]\) | \(288\) | \(0.27605\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 666.f have rank \(0\).
Complex multiplication
The elliptic curves in class 666.f do not have complex multiplication.Modular form 666.2.a.f
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.