Properties

Label 666.c
Number of curves $1$
Conductor $666$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 666.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
666.c1 666a1 \([1, -1, 0, -231, -1315]\) \(-69426531/1184\) \(-23304672\) \([]\) \(240\) \(0.21211\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 666.c1 has rank \(0\).

Complex multiplication

The elliptic curves in class 666.c do not have complex multiplication.

Modular form 666.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 2 q^{5} - 3 q^{7} - q^{8} - 2 q^{10} + 5 q^{11} - 3 q^{13} + 3 q^{14} + q^{16} + 3 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display