Show commands:
SageMath

E = EllipticCurve("b1")

E.isogeny_class()

## Elliptic curves in class 666.b

sage: E.isogeny_class().curves

LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|

666.b1 | 666b1 | \([1, -1, 0, 153, -4685]\) | \(541343375/13108878\) | \(-9556372062\) | \([]\) | \(352\) | \(0.59524\) | \(\Gamma_0(N)\)-optimal |

## Rank

sage: E.rank()

The elliptic curve 666.b1 has rank \(0\).

## Complex multiplication

The elliptic curves in class 666.b do not have complex multiplication.## Modular form 666.2.a.b

sage: E.q_eigenform(10)