Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 666.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
666.a1 | 666c2 | \([1, -1, 0, -1332, 19062]\) | \(-358667682625/303918\) | \(-221556222\) | \([3]\) | \(288\) | \(0.52868\) | |
666.a2 | 666c1 | \([1, -1, 0, 18, 108]\) | \(857375/7992\) | \(-5826168\) | \([]\) | \(96\) | \(-0.020627\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 666.a have rank \(1\).
Complex multiplication
The elliptic curves in class 666.a do not have complex multiplication.Modular form 666.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.