Properties

Label 666.a
Number of curves $2$
Conductor $666$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 666.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
666.a1 666c2 \([1, -1, 0, -1332, 19062]\) \(-358667682625/303918\) \(-221556222\) \([3]\) \(288\) \(0.52868\)  
666.a2 666c1 \([1, -1, 0, 18, 108]\) \(857375/7992\) \(-5826168\) \([]\) \(96\) \(-0.020627\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 666.a have rank \(1\).

Complex multiplication

The elliptic curves in class 666.a do not have complex multiplication.

Modular form 666.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{7} - q^{8} - 3 q^{11} - q^{13} + q^{14} + q^{16} + 3 q^{17} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.