Show commands: SageMath
Rank
The elliptic curves in class 66300l have rank \(2\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 66300l do not have complex multiplication.Modular form 66300.2.a.l
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 66300l
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
66300.i1 | 66300l1 | \([0, -1, 0, -31233, 2134962]\) | \(13478411517952/304317\) | \(76079250000\) | \([2]\) | \(122880\) | \(1.2020\) | \(\Gamma_0(N)\)-optimal |
66300.i2 | 66300l2 | \([0, -1, 0, -30108, 2294712]\) | \(-754612278352/127035441\) | \(-508141764000000\) | \([2]\) | \(245760\) | \(1.5486\) |