Properties

Label 66300f
Number of curves $4$
Conductor $66300$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 66300f have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 66300f do not have complex multiplication.

Modular form 66300.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 4 q^{7} + q^{9} - q^{13} + q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 66300f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
66300.t2 66300f1 \([0, -1, 0, -78833, 8545662]\) \(216727177216000/2738853\) \(684713250000\) \([2]\) \(207360\) \(1.4173\) \(\Gamma_0(N)\)-optimal
66300.t3 66300f2 \([0, -1, 0, -76708, 9025912]\) \(-12479332642000/1526829993\) \(-6107319972000000\) \([2]\) \(414720\) \(1.7639\)  
66300.t1 66300f3 \([0, -1, 0, -123833, -2222838]\) \(840033089536000/477272151837\) \(119318037959250000\) \([2]\) \(622080\) \(1.9666\)  
66300.t4 66300f4 \([0, -1, 0, 490292, -18190088]\) \(3258571509326000/1920843121977\) \(-7683372487908000000\) \([2]\) \(1244160\) \(2.3132\)