Show commands: SageMath
Rank
The elliptic curves in class 66300f have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 66300f do not have complex multiplication.Modular form 66300.2.a.f
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 66300f
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
66300.t2 | 66300f1 | \([0, -1, 0, -78833, 8545662]\) | \(216727177216000/2738853\) | \(684713250000\) | \([2]\) | \(207360\) | \(1.4173\) | \(\Gamma_0(N)\)-optimal |
66300.t3 | 66300f2 | \([0, -1, 0, -76708, 9025912]\) | \(-12479332642000/1526829993\) | \(-6107319972000000\) | \([2]\) | \(414720\) | \(1.7639\) | |
66300.t1 | 66300f3 | \([0, -1, 0, -123833, -2222838]\) | \(840033089536000/477272151837\) | \(119318037959250000\) | \([2]\) | \(622080\) | \(1.9666\) | |
66300.t4 | 66300f4 | \([0, -1, 0, 490292, -18190088]\) | \(3258571509326000/1920843121977\) | \(-7683372487908000000\) | \([2]\) | \(1244160\) | \(2.3132\) |