Properties

 Label 66240.en Number of curves $6$ Conductor $66240$ CM no Rank $0$ Graph

Related objects

Show commands for: SageMath
sage: E = EllipticCurve("66240.en1")

sage: E.isogeny_class()

Elliptic curves in class 66240.en

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
66240.en1 66240fm4 [0, 0, 0, -63590412, 195180115984] [2] 2359296
66240.en2 66240fm6 [0, 0, 0, -14878092, -18920874224] [2] 4718592
66240.en3 66240fm3 [0, 0, 0, -4078092, 2882165776] [2, 2] 2359296
66240.en4 66240fm2 [0, 0, 0, -3974412, 3049671184] [2, 2] 1179648
66240.en5 66240fm1 [0, 0, 0, -241932, 50250256] [2] 589824 $$\Gamma_0(N)$$-optimal
66240.en6 66240fm5 [0, 0, 0, 5063028, 13964859664] [4] 4718592

Rank

sage: E.rank()

The elliptic curves in class 66240.en have rank $$0$$.

Modular form 66240.2.a.en

sage: E.q_eigenform(10)

$$q + q^{5} - 4q^{11} + 2q^{13} + 6q^{17} + 4q^{19} + O(q^{20})$$

Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrrrr} 1 & 8 & 4 & 2 & 4 & 8 \\ 8 & 1 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 2 & 4 & 2 \\ 2 & 4 & 2 & 1 & 2 & 4 \\ 4 & 8 & 4 & 2 & 1 & 8 \\ 8 & 4 & 2 & 4 & 8 & 1 \end{array}\right)$$

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.