Properties

Label 66139.a
Number of curves $3$
Conductor $66139$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 66139.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
66139.a1 66139a3 \([0, 1, 1, -2678049, 1685955405]\) \(-50357871050752/19\) \(-801430139179\) \([]\) \(620136\) \(2.0722\)  
66139.a2 66139a2 \([0, 1, 1, -32489, 2387160]\) \(-89915392/6859\) \(-289316280243619\) \([]\) \(206712\) \(1.5229\)  
66139.a3 66139a1 \([0, 1, 1, 2321, 2675]\) \(32768/19\) \(-801430139179\) \([]\) \(68904\) \(0.97360\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 66139.a have rank \(1\).

Complex multiplication

The elliptic curves in class 66139.a do not have complex multiplication.

Modular form 66139.2.a.a

sage: E.q_eigenform(10)
 
\(q - 2q^{3} - 2q^{4} + 3q^{5} - q^{7} + q^{9} - 3q^{11} + 4q^{12} + 4q^{13} - 6q^{15} + 4q^{16} - 3q^{17} + q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.