Properties

Label 6552v
Number of curves $4$
Conductor $6552$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("v1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 6552v have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6552v do not have complex multiplication.

Modular form 6552.2.a.v

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} + q^{7} + 4 q^{11} - q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 6552v

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6552.h3 6552v1 \([0, 0, 0, -831, -9214]\) \(340062928/273\) \(50948352\) \([2]\) \(2560\) \(0.40871\) \(\Gamma_0(N)\)-optimal
6552.h2 6552v2 \([0, 0, 0, -1011, -4930]\) \(153091012/74529\) \(55635600384\) \([2, 2]\) \(5120\) \(0.75528\)  
6552.h1 6552v3 \([0, 0, 0, -8571, 302006]\) \(46640233586/599781\) \(895468234752\) \([2]\) \(10240\) \(1.1019\)  
6552.h4 6552v4 \([0, 0, 0, 3669, -37690]\) \(3658553134/2528253\) \(-3774661502976\) \([2]\) \(10240\) \(1.1019\)