Show commands: SageMath
Rank
The elliptic curves in class 6552v have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 6552v do not have complex multiplication.Modular form 6552.2.a.v
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 6552v
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 6552.h3 | 6552v1 | \([0, 0, 0, -831, -9214]\) | \(340062928/273\) | \(50948352\) | \([2]\) | \(2560\) | \(0.40871\) | \(\Gamma_0(N)\)-optimal |
| 6552.h2 | 6552v2 | \([0, 0, 0, -1011, -4930]\) | \(153091012/74529\) | \(55635600384\) | \([2, 2]\) | \(5120\) | \(0.75528\) | |
| 6552.h1 | 6552v3 | \([0, 0, 0, -8571, 302006]\) | \(46640233586/599781\) | \(895468234752\) | \([2]\) | \(10240\) | \(1.1019\) | |
| 6552.h4 | 6552v4 | \([0, 0, 0, 3669, -37690]\) | \(3658553134/2528253\) | \(-3774661502976\) | \([2]\) | \(10240\) | \(1.1019\) |