Show commands: SageMath
Rank
The elliptic curves in class 6552s have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 6552s do not have complex multiplication.Modular form 6552.2.a.s
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 6552s
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 6552.k1 | 6552s1 | \([0, 0, 0, -1830, -29923]\) | \(58107136000/464373\) | \(5416446672\) | \([2]\) | \(3072\) | \(0.69527\) | \(\Gamma_0(N)\)-optimal |
| 6552.k2 | 6552s2 | \([0, 0, 0, -615, -69046]\) | \(-137842000/10955763\) | \(-2044608314112\) | \([2]\) | \(6144\) | \(1.0418\) |