Properties

Label 6552.r
Number of curves $1$
Conductor $6552$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("r1")
 
E.isogeny_class()
 

Elliptic curves in class 6552.r

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6552.r1 6552a1 \([0, 0, 0, 8493, -375282]\) \(1225217998314/1809323971\) \(-100048378300416\) \([]\) \(13440\) \(1.3718\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 6552.r1 has rank \(0\).

Complex multiplication

The elliptic curves in class 6552.r do not have complex multiplication.

Modular form 6552.2.a.r

sage: E.q_eigenform(10)
 
\(q + q^{5} - q^{7} + q^{11} + q^{13} - 3 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display