Show commands for:
SageMath
sage: E = EllipticCurve("bc1")
sage: E.isogeny_class()
Elliptic curves in class 6534.bc
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
6534.bc1 | 6534ba3 | [1, -1, 1, -14906, 932473] | [] | 24300 | |
6534.bc2 | 6534ba1 | [1, -1, 1, -386, -2857] | [] | 2700 | \(\Gamma_0(N)\)-optimal |
6534.bc3 | 6534ba2 | [1, -1, 1, 1429, -14957] | [] | 8100 |
Rank
sage: E.rank()
The elliptic curves in class 6534.bc have rank \(0\).
Complex multiplication
The elliptic curves in class 6534.bc do not have complex multiplication.Modular form 6534.2.a.bc
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrr} 1 & 9 & 3 \\ 9 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.