Properties

Label 65072c
Number of curves $1$
Conductor $65072$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 65072c1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(83\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 65072c do not have complex multiplication.

Modular form 65072.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{3} + 4 q^{5} + 6 q^{9} + 3 q^{11} + 4 q^{13} - 12 q^{15} + 3 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 65072c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
65072.a1 65072c1 \([0, 0, 0, -343, 3430]\) \(-148176/83\) \(-2499805952\) \([]\) \(74880\) \(0.50657\) \(\Gamma_0(N)\)-optimal