This is a model for the quotient of the modular curve $X_0(65)$ by its group $\langle w_5, w_{13} \rangle$ of Atkin-Lehner involutions.
Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+4x+1\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+4xz^2+z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+5157x+31158\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(1, 2\right)\)
|
$\hat{h}(P)$ | ≈ | $0.18775704933063316090223643841$ |
Torsion generators
\( \left(-\frac{1}{4}, \frac{1}{8}\right) \)
Integral points
\( \left(0, 1\right) \), \( \left(0, -1\right) \), \( \left(1, 2\right) \), \( \left(1, -3\right) \), \( \left(3, 5\right) \), \( \left(3, -8\right) \), \( \left(11, 32\right) \), \( \left(11, -43\right) \), \( \left(16, 57\right) \), \( \left(16, -73\right) \), \( \left(393, 7597\right) \), \( \left(393, -7990\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 65 \) | = | $5 \cdot 13$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $-4225 $ | = | $-1 \cdot 5^{2} \cdot 13^{2} $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{6967871}{4225} \) | = | $5^{-2} \cdot 13^{-2} \cdot 191^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $-0.61504164701218906692326327839\dots$ | ||
Stable Faltings height: | $-0.61504164701218906692326327839\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $1$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $0.18775704933063316090223643841\dots$ | ||
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
| |||
Real period: | $2.6914267352859004970576117647\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 4 $ = $ 2\cdot2 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $2$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L'(E,1) $ ≈ $ 0.50533434230685977745953442461 $ |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 4 | ||
$ \Gamma_0(N) $-optimal: | no | ||
Manin constant: | 1 |
Local data
This elliptic curve is semistable. There are 2 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$5$ | $2$ | $I_{2}$ | Non-split multiplicative | 1 | 1 | 2 | 2 |
$13$ | $2$ | $I_{2}$ | Non-split multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.37 |
The image of the adelic Galois representation has level $520$, index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 391 & 8 \\ 327 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 8 \\ 48 & 77 \end{array}\right),\left(\begin{array}{rr} 513 & 8 \\ 512 & 9 \end{array}\right),\left(\begin{array}{rr} 3 & 8 \\ 10 & 27 \end{array}\right),\left(\begin{array}{rr} 261 & 8 \\ 2 & 17 \end{array}\right),\left(\begin{array}{rr} 41 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 417 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ord | ord | nonsplit | ord | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 |
$\mu$-invariant(s) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 65.a
consists of 2 curves linked by isogenies of
degree 2.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | 2.0.4.1-4225.5-a1 |
$4$ | 4.2.16900.2 | \(\Z/4\Z\) | Not in database |
$8$ | 8.0.4569760000.3 | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.0.276889600.3 | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.2.39039316875.1 | \(\Z/6\Z\) | Not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | Not in database |
$16$ | deg 16 | \(\Z/8\Z\) | Not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.