Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 65.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
65.a1 | 65a1 | \([1, 0, 0, -1, 0]\) | \(117649/65\) | \(65\) | \([2]\) | \(2\) | \(-0.96162\) | \(\Gamma_0(N)\)-optimal |
65.a2 | 65a2 | \([1, 0, 0, 4, 1]\) | \(6967871/4225\) | \(-4225\) | \([2]\) | \(4\) | \(-0.61504\) |
Rank
sage: E.rank()
The elliptic curves in class 65.a have rank \(1\).
Complex multiplication
The elliptic curves in class 65.a do not have complex multiplication.Modular form 65.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.