Show commands:
SageMath
E = EllipticCurve("u1")
E.isogeny_class()
Elliptic curves in class 6480.u
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
6480.u1 | 6480q1 | \([0, 0, 0, -147, -814]\) | \(-1058841/250\) | \(-82944000\) | \([]\) | \(1728\) | \(0.23856\) | \(\Gamma_0(N)\)-optimal |
6480.u2 | 6480q2 | \([0, 0, 0, 1053, 5346]\) | \(59319/40\) | \(-87071293440\) | \([]\) | \(5184\) | \(0.78786\) |
Rank
sage: E.rank()
The elliptic curves in class 6480.u have rank \(1\).
Complex multiplication
The elliptic curves in class 6480.u do not have complex multiplication.Modular form 6480.2.a.u
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.