Properties

Label 6480.u
Number of curves $2$
Conductor $6480$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 6480.u have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6480.u do not have complex multiplication.

Modular form 6480.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + q^{7} + 5 q^{13} - 6 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 6480.u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6480.u1 6480q1 \([0, 0, 0, -147, -814]\) \(-1058841/250\) \(-82944000\) \([]\) \(1728\) \(0.23856\) \(\Gamma_0(N)\)-optimal
6480.u2 6480q2 \([0, 0, 0, 1053, 5346]\) \(59319/40\) \(-87071293440\) \([]\) \(5184\) \(0.78786\)