Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
6480.a1 |
6480n1 |
6480.a |
6480n |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{27} \cdot 3^{4} \cdot 5^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$25920$ |
$1.417555$ |
$-115330920751809/4096000$ |
$1.05706$ |
$5.13772$ |
$[0, 0, 0, -70203, -7159702]$ |
\(y^2=x^3-70203x-7159702\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 40.2.0.a.1, 120.16.0.? |
$[]$ |
6480.a2 |
6480n2 |
6480.a |
6480n |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{17} \cdot 3^{12} \cdot 5^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$77760$ |
$1.966860$ |
$-225866529/62500000$ |
$1.15039$ |
$5.34481$ |
$[0, 0, 0, -16443, -17764758]$ |
\(y^2=x^3-16443x-17764758\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 40.2.0.a.1, 120.16.0.? |
$[]$ |
6480.b1 |
6480k2 |
6480.b |
6480k |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( 2^{8} \cdot 3^{10} \cdot 5^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15552$ |
$1.278324$ |
$4045602816/1953125$ |
$1.18271$ |
$4.40407$ |
$[0, 0, 0, -8208, -116532]$ |
\(y^2=x^3-8208x-116532\) |
3.4.0.a.1, 10.2.0.a.1, 12.8.0-3.a.1.2, 30.8.0.a.1, 60.16.0-30.a.1.4 |
$[]$ |
6480.b2 |
6480k1 |
6480.b |
6480k |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5184$ |
$0.729018$ |
$183711891456/125$ |
$1.15925$ |
$4.33813$ |
$[0, 0, 0, -6768, -214308]$ |
\(y^2=x^3-6768x-214308\) |
3.4.0.a.1, 10.2.0.a.1, 12.8.0-3.a.1.1, 30.8.0.a.1, 60.16.0-30.a.1.1 |
$[]$ |
6480.c1 |
6480j2 |
6480.c |
6480j |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( 2^{12} \cdot 3^{10} \cdot 5^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5184$ |
$0.767817$ |
$2359296/125$ |
$1.10725$ |
$3.87146$ |
$[0, 0, 0, -1728, 26352]$ |
\(y^2=x^3-1728x+26352\) |
3.4.0.a.1, 10.2.0.a.1, 12.8.0-3.a.1.2, 30.8.0.a.1, 60.16.0-30.a.1.4 |
$[]$ |
6480.c2 |
6480j1 |
6480.c |
6480j |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( 2^{12} \cdot 3^{6} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1728$ |
$0.218511$ |
$884736/5$ |
$1.04562$ |
$3.25899$ |
$[0, 0, 0, -288, -1872]$ |
\(y^2=x^3-288x-1872\) |
3.4.0.a.1, 10.2.0.a.1, 12.8.0-3.a.1.1, 30.8.0.a.1, 60.16.0-30.a.1.1 |
$[]$ |
6480.d1 |
6480a1 |
6480.d |
6480a |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.5.0.1 |
5S4 |
$20$ |
$120$ |
$6$ |
$1.951599631$ |
$1$ |
|
$2$ |
$1920$ |
$0.436163$ |
$4543847424/3125$ |
$1.01085$ |
$3.66624$ |
$[0, 0, 0, -948, 11228]$ |
\(y^2=x^3-948x+11228\) |
5.5.0.a.1, 10.30.0.a.1, 20.120.6.a.1 |
$[(17, 5)]$ |
6480.e1 |
6480b1 |
6480.e |
6480b |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{11} \cdot 3^{4} \cdot 5^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.503891036$ |
$1$ |
|
$4$ |
$960$ |
$-0.051180$ |
$-18/25$ |
$1.45567$ |
$2.58567$ |
$[0, 0, 0, -3, 98]$ |
\(y^2=x^3-3x+98\) |
8.2.0.a.1 |
$[(-1, 10)]$ |
6480.f1 |
6480g1 |
6480.f |
6480g |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( 2^{12} \cdot 3^{4} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$960$ |
$-0.079350$ |
$36864/5$ |
$0.77778$ |
$2.64653$ |
$[0, 0, 0, -48, 112]$ |
\(y^2=x^3-48x+112\) |
10.2.0.a.1 |
$[]$ |
6480.g1 |
6480i2 |
6480.g |
6480i |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{16} \cdot 3^{12} \cdot 5^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10368$ |
$1.121687$ |
$-2146689/2000$ |
$0.96139$ |
$4.22036$ |
$[0, 0, 0, -3483, 127818]$ |
\(y^2=x^3-3483x+127818\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 20.2.0.a.1, 30.8.0-3.a.1.2, 60.16.0-60.a.1.1 |
$[]$ |
6480.g2 |
6480i1 |
6480.g |
6480i |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{24} \cdot 3^{4} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3456$ |
$0.572381$ |
$15166431/20480$ |
$0.98011$ |
$3.36519$ |
$[0, 0, 0, 357, -2998]$ |
\(y^2=x^3+357x-2998\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 20.2.0.a.1, 30.8.0-3.a.1.1, 60.16.0-60.a.1.4 |
$[]$ |
6480.h1 |
6480w1 |
6480.h |
6480w |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{8} \cdot 3^{6} \cdot 5 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$4.591126395$ |
$1$ |
|
$2$ |
$864$ |
$-0.080477$ |
$-148176/5$ |
$0.76106$ |
$2.74594$ |
$[0, 0, 0, -63, -198]$ |
\(y^2=x^3-63x-198\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 20.2.0.a.1, 30.8.0-3.a.1.1, 60.16.0-60.a.1.4 |
$[(94, 908)]$ |
6480.h2 |
6480w2 |
6480.h |
6480w |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{8} \cdot 3^{10} \cdot 5^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$1.530375465$ |
$1$ |
|
$2$ |
$2592$ |
$0.468829$ |
$191664/125$ |
$0.87436$ |
$3.26951$ |
$[0, 0, 0, 297, -702]$ |
\(y^2=x^3+297x-702\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 20.2.0.a.1, 30.8.0-3.a.1.2, 60.16.0-60.a.1.1 |
$[(6, 36)]$ |
6480.i1 |
6480h2 |
6480.i |
6480h |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{13} \cdot 3^{10} \cdot 5^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5184$ |
$0.787864$ |
$-1058841/250$ |
$1.05827$ |
$3.81916$ |
$[0, 0, 0, -1323, 21978]$ |
\(y^2=x^3-1323x+21978\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 40.2.0.a.1, 120.16.0.? |
$[]$ |
6480.i2 |
6480h1 |
6480.i |
6480h |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{15} \cdot 3^{6} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1728$ |
$0.238558$ |
$59319/40$ |
$0.93827$ |
$2.95108$ |
$[0, 0, 0, 117, -198]$ |
\(y^2=x^3+117x-198\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 40.2.0.a.1, 120.16.0.? |
$[]$ |
6480.j1 |
6480c1 |
6480.j |
6480c |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( 2^{8} \cdot 3^{10} \cdot 5 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$2.327188391$ |
$1$ |
|
$2$ |
$1152$ |
$0.202663$ |
$9216/5$ |
$0.81518$ |
$2.92372$ |
$[0, 0, 0, -108, 108]$ |
\(y^2=x^3-108x+108\) |
10.2.0.a.1 |
$[(1, 1)]$ |
6480.k1 |
6480l2 |
6480.k |
6480l |
$2$ |
$7$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{12} \cdot 3^{4} \cdot 5^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$1260$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$5376$ |
$0.845512$ |
$-15590912409/78125$ |
$1.00703$ |
$4.12361$ |
$[0, 0, 0, -3603, 83602]$ |
\(y^2=x^3-3603x+83602\) |
7.8.0.a.1, 20.2.0.a.1, 28.16.0-7.a.1.2, 63.24.0.b.1, 70.16.0-7.a.1.1, $\ldots$ |
$[]$ |
6480.k2 |
6480l1 |
6480.k |
6480l |
$2$ |
$7$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{12} \cdot 3^{4} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$1260$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$768$ |
$-0.127443$ |
$-9/5$ |
$1.00480$ |
$2.48134$ |
$[0, 0, 0, -3, -62]$ |
\(y^2=x^3-3x-62\) |
7.8.0.a.1, 20.2.0.a.1, 28.16.0-7.a.1.1, 63.24.0.b.2, 70.16.0-7.a.1.2, $\ldots$ |
$[]$ |
6480.l1 |
6480x1 |
6480.l |
6480x |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{21} \cdot 3^{6} \cdot 5^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$24$ |
$16$ |
$0$ |
$2.367214583$ |
$1$ |
|
$4$ |
$5184$ |
$0.721830$ |
$-8120601/12800$ |
$0.99343$ |
$3.66139$ |
$[0, 0, 0, -603, -10998]$ |
\(y^2=x^3-603x-10998\) |
3.4.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.1, 24.16.0-24.a.1.5 |
$[(31, 10)]$ |
6480.l2 |
6480x2 |
6480.l |
6480x |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$24$ |
$16$ |
$0$ |
$0.789071527$ |
$1$ |
|
$4$ |
$15552$ |
$1.271135$ |
$62710839/125000$ |
$1.00087$ |
$4.34704$ |
$[0, 0, 0, 5157, 222858]$ |
\(y^2=x^3+5157x+222858\) |
3.4.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.2, 24.16.0-24.a.1.7 |
$[(159, 2250)]$ |
6480.m1 |
6480m2 |
6480.m |
6480m |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( 2^{8} \cdot 3^{12} \cdot 5^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5184$ |
$0.653074$ |
$221184/125$ |
$1.42657$ |
$3.53619$ |
$[0, 0, 0, -648, 972]$ |
\(y^2=x^3-648x+972\) |
3.4.0.a.1, 10.2.0.a.1, 12.8.0-3.a.1.2, 30.8.0.a.1, 60.16.0-30.a.1.4 |
$[]$ |
6480.m2 |
6480m1 |
6480.m |
6480m |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( 2^{8} \cdot 3^{4} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1728$ |
$0.103768$ |
$362225664/5$ |
$1.03419$ |
$3.37805$ |
$[0, 0, 0, -408, -3172]$ |
\(y^2=x^3-408x-3172\) |
3.4.0.a.1, 10.2.0.a.1, 12.8.0-3.a.1.1, 30.8.0.a.1, 60.16.0-30.a.1.1 |
$[]$ |
6480.n1 |
6480v2 |
6480.n |
6480v |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{27} \cdot 3^{10} \cdot 5^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$0.669837078$ |
$1$ |
|
$4$ |
$77760$ |
$1.966860$ |
$-115330920751809/4096000$ |
$1.05706$ |
$5.88878$ |
$[0, 0, 0, -631827, 193311954]$ |
\(y^2=x^3-631827x+193311954\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 40.2.0.a.1, 120.16.0.? |
$[(313, 5120)]$ |
6480.n2 |
6480v1 |
6480.n |
6480v |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{17} \cdot 3^{6} \cdot 5^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$0.223279026$ |
$1$ |
|
$8$ |
$25920$ |
$1.417555$ |
$-225866529/62500000$ |
$1.15039$ |
$4.59375$ |
$[0, 0, 0, -1827, 657954]$ |
\(y^2=x^3-1827x+657954\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 40.2.0.a.1, 120.16.0.? |
$[(-47, 800)]$ |
6480.o1 |
6480s2 |
6480.o |
6480s |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( 2^{12} \cdot 3^{12} \cdot 5 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$3.041374035$ |
$1$ |
|
$2$ |
$5184$ |
$0.767817$ |
$884736/5$ |
$1.04562$ |
$4.01006$ |
$[0, 0, 0, -2592, 50544]$ |
\(y^2=x^3-2592x+50544\) |
3.4.0.a.1, 10.2.0.a.1, 12.8.0-3.a.1.2, 30.8.0.a.1, 60.16.0-30.a.1.4 |
$[(25, 37)]$ |
6480.o2 |
6480s1 |
6480.o |
6480s |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( 2^{12} \cdot 3^{4} \cdot 5^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$1.013791345$ |
$1$ |
|
$2$ |
$1728$ |
$0.218511$ |
$2359296/125$ |
$1.10725$ |
$3.12040$ |
$[0, 0, 0, -192, -976]$ |
\(y^2=x^3-192x-976\) |
3.4.0.a.1, 10.2.0.a.1, 12.8.0-3.a.1.1, 30.8.0.a.1, 60.16.0-30.a.1.1 |
$[(-7, 5)]$ |
6480.p1 |
6480r2 |
6480.p |
6480r |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( 2^{8} \cdot 3^{12} \cdot 5^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$0.671750331$ |
$1$ |
|
$4$ |
$15552$ |
$1.278324$ |
$183711891456/125$ |
$1.15925$ |
$5.08919$ |
$[0, 0, 0, -60912, 5786316]$ |
\(y^2=x^3-60912x+5786316\) |
3.4.0.a.1, 10.2.0.a.1, 12.8.0-3.a.1.2, 30.8.0.a.1, 60.16.0-30.a.1.4 |
$[(142, 10)]$ |
6480.p2 |
6480r1 |
6480.p |
6480r |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$0.223916777$ |
$1$ |
|
$4$ |
$5184$ |
$0.729018$ |
$4045602816/1953125$ |
$1.18271$ |
$3.65301$ |
$[0, 0, 0, -912, 4316]$ |
\(y^2=x^3-912x+4316\) |
3.4.0.a.1, 10.2.0.a.1, 12.8.0-3.a.1.1, 30.8.0.a.1, 60.16.0-30.a.1.1 |
$[(2, 50)]$ |
6480.q1 |
6480f1 |
6480.q |
6480f |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{11} \cdot 3^{10} \cdot 5^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.265505155$ |
$1$ |
|
$8$ |
$2880$ |
$0.498127$ |
$-18/25$ |
$1.45567$ |
$3.33673$ |
$[0, 0, 0, -27, -2646]$ |
\(y^2=x^3-27x-2646\) |
8.2.0.a.1 |
$[(33, 180)]$ |
6480.r1 |
6480o1 |
6480.r |
6480o |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( 2^{12} \cdot 3^{10} \cdot 5 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$1.333259607$ |
$1$ |
|
$2$ |
$2880$ |
$0.469956$ |
$36864/5$ |
$0.77778$ |
$3.39759$ |
$[0, 0, 0, -432, -3024]$ |
\(y^2=x^3-432x-3024\) |
10.2.0.a.1 |
$[(-15, 9)]$ |
6480.s1 |
6480d1 |
6480.s |
6480d |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( 2^{8} \cdot 3^{10} \cdot 5^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.5.0.1 |
5S4 |
$20$ |
$120$ |
$6$ |
$1$ |
$1$ |
|
$0$ |
$5760$ |
$0.985470$ |
$4543847424/3125$ |
$1.01085$ |
$4.41730$ |
$[0, 0, 0, -8532, -303156]$ |
\(y^2=x^3-8532x-303156\) |
5.5.0.a.1, 10.30.0.a.1, 20.120.6.a.1 |
$[]$ |
6480.t1 |
6480p2 |
6480.t |
6480p |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{8} \cdot 3^{12} \cdot 5 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$2.698017573$ |
$1$ |
|
$2$ |
$2592$ |
$0.468829$ |
$-148176/5$ |
$0.76106$ |
$3.49700$ |
$[0, 0, 0, -567, 5346]$ |
\(y^2=x^3-567x+5346\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 20.2.0.a.1, 30.8.0-3.a.1.2, 60.16.0-60.a.1.1 |
$[(10, 26)]$ |
6480.t2 |
6480p1 |
6480.t |
6480p |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{8} \cdot 3^{4} \cdot 5^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$0.899339191$ |
$1$ |
|
$2$ |
$864$ |
$-0.080477$ |
$191664/125$ |
$0.87436$ |
$2.51845$ |
$[0, 0, 0, 33, 26]$ |
\(y^2=x^3+33x+26\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 20.2.0.a.1, 30.8.0-3.a.1.1, 60.16.0-60.a.1.4 |
$[(2, 10)]$ |
6480.u1 |
6480q1 |
6480.u |
6480q |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{13} \cdot 3^{4} \cdot 5^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$0.556822068$ |
$1$ |
|
$4$ |
$1728$ |
$0.238558$ |
$-1058841/250$ |
$1.05827$ |
$3.06810$ |
$[0, 0, 0, -147, -814]$ |
\(y^2=x^3-147x-814\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 40.2.0.a.1, 120.16.0.? |
$[(17, 40)]$ |
6480.u2 |
6480q2 |
6480.u |
6480q |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{15} \cdot 3^{12} \cdot 5 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1.670466204$ |
$1$ |
|
$2$ |
$5184$ |
$0.787864$ |
$59319/40$ |
$0.93827$ |
$3.70215$ |
$[0, 0, 0, 1053, 5346]$ |
\(y^2=x^3+1053x+5346\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 40.2.0.a.1, 120.16.0.? |
$[(1, 80)]$ |
6480.v1 |
6480y1 |
6480.v |
6480y |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{16} \cdot 3^{6} \cdot 5^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3456$ |
$0.572381$ |
$-2146689/2000$ |
$0.96139$ |
$3.46930$ |
$[0, 0, 0, -387, -4734]$ |
\(y^2=x^3-387x-4734\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 20.2.0.a.1, 30.8.0-3.a.1.1, 60.16.0-60.a.1.4 |
$[]$ |
6480.v2 |
6480y2 |
6480.v |
6480y |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{24} \cdot 3^{10} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10368$ |
$1.121687$ |
$15166431/20480$ |
$0.98011$ |
$4.11626$ |
$[0, 0, 0, 3213, 80946]$ |
\(y^2=x^3+3213x+80946\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 20.2.0.a.1, 30.8.0-3.a.1.2, 60.16.0-60.a.1.1 |
$[]$ |
6480.w1 |
6480e1 |
6480.w |
6480e |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( 2^{8} \cdot 3^{4} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$384$ |
$-0.346643$ |
$9216/5$ |
$0.81518$ |
$2.17266$ |
$[0, 0, 0, -12, -4]$ |
\(y^2=x^3-12x-4\) |
10.2.0.a.1 |
$[]$ |
6480.x1 |
6480z2 |
6480.x |
6480z |
$2$ |
$7$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{12} \cdot 3^{10} \cdot 5^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$1260$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$16128$ |
$1.394819$ |
$-15590912409/78125$ |
$1.00703$ |
$4.87467$ |
$[0, 0, 0, -32427, -2257254]$ |
\(y^2=x^3-32427x-2257254\) |
7.8.0.a.1, 20.2.0.a.1, 63.24.0.b.1, 84.16.0.?, 140.16.0.?, $\ldots$ |
$[]$ |
6480.x2 |
6480z1 |
6480.x |
6480z |
$2$ |
$7$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{12} \cdot 3^{10} \cdot 5 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$1260$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$2304$ |
$0.421864$ |
$-9/5$ |
$1.00480$ |
$3.23240$ |
$[0, 0, 0, -27, 1674]$ |
\(y^2=x^3-27x+1674\) |
7.8.0.a.1, 20.2.0.a.1, 63.24.0.b.2, 84.16.0.?, 140.16.0.?, $\ldots$ |
$[]$ |
6480.y1 |
6480t2 |
6480.y |
6480t |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( 2^{8} \cdot 3^{10} \cdot 5 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$1.313711045$ |
$1$ |
|
$2$ |
$5184$ |
$0.653074$ |
$362225664/5$ |
$1.03419$ |
$4.12912$ |
$[0, 0, 0, -3672, 85644]$ |
\(y^2=x^3-3672x+85644\) |
3.4.0.a.1, 10.2.0.a.1, 12.8.0-3.a.1.2, 30.8.0.a.1, 60.16.0-30.a.1.4 |
$[(34, 10)]$ |
6480.y2 |
6480t1 |
6480.y |
6480t |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$0.437903681$ |
$1$ |
|
$4$ |
$1728$ |
$0.103768$ |
$221184/125$ |
$1.42657$ |
$2.78513$ |
$[0, 0, 0, -72, -36]$ |
\(y^2=x^3-72x-36\) |
3.4.0.a.1, 10.2.0.a.1, 12.8.0-3.a.1.1, 30.8.0.a.1, 60.16.0-30.a.1.1 |
$[(-2, 10)]$ |
6480.z1 |
6480u2 |
6480.z |
6480u |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{21} \cdot 3^{12} \cdot 5^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$24$ |
$16$ |
$0$ |
$0.973749741$ |
$1$ |
|
$4$ |
$15552$ |
$1.271135$ |
$-8120601/12800$ |
$0.99343$ |
$4.41245$ |
$[0, 0, 0, -5427, 296946]$ |
\(y^2=x^3-5427x+296946\) |
3.4.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.2, 24.16.0-24.a.1.7 |
$[(-23, 640)]$ |
6480.z2 |
6480u1 |
6480.z |
6480u |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5 \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$24$ |
$16$ |
$0$ |
$0.324583247$ |
$1$ |
|
$4$ |
$5184$ |
$0.721830$ |
$62710839/125000$ |
$1.00087$ |
$3.59598$ |
$[0, 0, 0, 573, -8254]$ |
\(y^2=x^3+573x-8254\) |
3.4.0.a.1, 8.2.0.a.1, 12.8.0-3.a.1.1, 24.16.0-24.a.1.5 |
$[(17, 80)]$ |