Properties

Label 64680dj
Number of curves $4$
Conductor $64680$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("dj1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 64680dj

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
64680.dl4 64680dj1 \([0, 1, 0, 17820, -871200]\) \(20777545136/23059575\) \(-694511600428800\) \([4]\) \(196608\) \(1.5344\) \(\Gamma_0(N)\)-optimal
64680.dl3 64680dj2 \([0, 1, 0, -100760, -8270592]\) \(939083699236/300155625\) \(36160521344640000\) \([2, 2]\) \(393216\) \(1.8809\)  
64680.dl2 64680dj3 \([0, 1, 0, -639760, 190512608]\) \(120186986927618/4332064275\) \(1043789885213644800\) \([2]\) \(786432\) \(2.2275\)  
64680.dl1 64680dj4 \([0, 1, 0, -1459040, -678717600]\) \(1425631925916578/270703125\) \(65224605600000000\) \([2]\) \(786432\) \(2.2275\)  

Rank

sage: E.rank()
 

The elliptic curves in class 64680dj have rank \(0\).

Complex multiplication

The elliptic curves in class 64680dj do not have complex multiplication.

Modular form 64680.2.a.dj

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + q^{9} + q^{11} + 2 q^{13} + q^{15} + 2 q^{17} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.