Show commands for:
SageMath
sage: E = EllipticCurve("s1")
sage: E.isogeny_class()
Elliptic curves in class 6450.s
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
6450.s1 | 6450n2 | [1, 0, 1, -4144401, -3247777052] | [2] | 241920 | |
6450.s2 | 6450n1 | [1, 0, 1, -256401, -51841052] | [2] | 120960 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 6450.s have rank \(1\).
Complex multiplication
The elliptic curves in class 6450.s do not have complex multiplication.Modular form 6450.2.a.s
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.