Show commands: SageMath
Rank
The elliptic curves in class 645.e have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 645.e do not have complex multiplication.Modular form 645.2.a.e
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 645.e
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 645.e1 | 645b1 | \([1, 1, 0, -22, 31]\) | \(1263214441/29025\) | \(29025\) | \([2]\) | \(72\) | \(-0.35735\) | \(\Gamma_0(N)\)-optimal |
| 645.e2 | 645b2 | \([1, 1, 0, 3, 126]\) | \(1685159/6739605\) | \(-6739605\) | \([2]\) | \(144\) | \(-0.010775\) |