Properties

Label 64400t
Number of curves $1$
Conductor $64400$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("t1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 64400t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
64400.w1 64400t1 \([0, -1, 0, -4508, -228113]\) \(-40535147776/67648175\) \(-16912043750000\) \([]\) \(92160\) \(1.2291\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 64400t1 has rank \(1\).

Complex multiplication

The elliptic curves in class 64400t do not have complex multiplication.

Modular form 64400.2.a.t

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{7} - 2q^{9} + 2q^{11} + q^{13} + 2q^{17} + 2q^{19} + O(q^{20})\)  Toggle raw display