Properties

Label 64400o
Number of curves $1$
Conductor $64400$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("o1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 64400o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
64400.b1 64400o1 \([0, 0, 0, 610625, 4651962625]\) \(100718081964000000/37453512751940327\) \(-9363378187985081750000\) \([]\) \(7050240\) \(2.8950\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 64400o1 has rank \(0\).

Complex multiplication

The elliptic curves in class 64400o do not have complex multiplication.

Modular form 64400.2.a.o

sage: E.q_eigenform(10)
 
\(q - 3q^{3} - q^{7} + 6q^{9} + 6q^{11} - q^{13} + O(q^{20})\)  Toggle raw display