Properties

Label 64400j
Number of curves $1$
Conductor $64400$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("j1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 64400j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
64400.s1 64400j1 \([0, -1, 0, -23408, -1373813]\) \(-5674076449024/14904575\) \(-3726143750000\) \([]\) \(129024\) \(1.2875\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 64400j1 has rank \(0\).

Complex multiplication

The elliptic curves in class 64400j do not have complex multiplication.

Modular form 64400.2.a.j

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{7} - 2q^{9} + 2q^{11} + 5q^{13} + 6q^{17} + 6q^{19} + O(q^{20})\)  Toggle raw display