Properties

Label 64400cc
Number of curves $1$
Conductor $64400$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("cc1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 64400cc

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
64400.u1 64400cc1 \([0, -1, 0, -15408, -1767488]\) \(-158034076225/438790688\) \(-1123304161280000\) \([]\) \(230400\) \(1.5752\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 64400cc1 has rank \(1\).

Complex multiplication

The elliptic curves in class 64400cc do not have complex multiplication.

Modular form 64400.2.a.cc

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{7} - 2q^{9} + 5q^{11} + 2q^{13} - 5q^{17} - 5q^{19} + O(q^{20})\)  Toggle raw display