Properties

Label 64400bd
Number of curves $1$
Conductor $64400$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("bd1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 64400bd

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
64400.ba1 64400bd1 \([0, 0, 0, 4285, -2176830]\) \(84972077055/20040095362\) \(-2052105765068800\) \([]\) \(193536\) \(1.6173\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 64400bd1 has rank \(0\).

Complex multiplication

The elliptic curves in class 64400bd do not have complex multiplication.

Modular form 64400.2.a.bd

sage: E.q_eigenform(10)
 
\(q - q^{7} - 3q^{9} - 4q^{11} + 3q^{13} + q^{17} + O(q^{20})\)  Toggle raw display