Properties

Label 64400.x
Number of curves $1$
Conductor $64400$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("x1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 64400.x

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
64400.x1 64400br1 \([0, -1, 0, 42, 787]\) \(32000/1127\) \(-281750000\) \([]\) \(13824\) \(0.30131\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 64400.x1 has rank \(1\).

Complex multiplication

The elliptic curves in class 64400.x do not have complex multiplication.

Modular form 64400.2.a.x

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{7} - 2q^{9} + 2q^{11} + 3q^{13} + O(q^{20})\)  Toggle raw display