Properties

Label 64400.v
Number of curves $1$
Conductor $64400$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("v1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 64400.v

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
64400.v1 64400ch1 \([0, -1, 0, -137333, -19544963]\) \(-35806478336/3703\) \(-29624000000000\) \([]\) \(195840\) \(1.6175\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 64400.v1 has rank \(0\).

Complex multiplication

The elliptic curves in class 64400.v do not have complex multiplication.

Modular form 64400.2.a.v

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{7} - 2q^{9} + q^{11} + q^{13} + q^{17} - 2q^{19} + O(q^{20})\)  Toggle raw display