Properties

Label 64400.t
Number of curves $1$
Conductor $64400$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("t1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 64400.t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
64400.t1 64400be1 \([0, -1, 0, 9201467, -19208420563]\) \(1346216501445963776/3268768272021875\) \(-209201169409400000000000\) \([]\) \(5491200\) \(3.1587\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 64400.t1 has rank \(0\).

Complex multiplication

The elliptic curves in class 64400.t do not have complex multiplication.

Modular form 64400.2.a.t

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{7} - 2q^{9} + 5q^{11} - 3q^{13} + 5q^{17} + O(q^{20})\)  Toggle raw display