Properties

Label 64400.q
Number of curves $1$
Conductor $64400$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("q1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 64400.q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
64400.q1 64400h1 \([0, -1, 0, -51788633, 143467011637]\) \(-3840316976122235063296/27784071875\) \(-111136287500000000\) \([]\) \(3456000\) \(2.8672\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 64400.q1 has rank \(0\).

Complex multiplication

The elliptic curves in class 64400.q do not have complex multiplication.

Modular form 64400.2.a.q

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{7} - 2q^{9} - q^{11} - 5q^{13} + 7q^{17} + 4q^{19} + O(q^{20})\)  Toggle raw display