Properties

Label 64400.p
Number of curves $1$
Conductor $64400$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("p1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 64400.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
64400.p1 64400d1 \([0, -1, 0, -81908, 9051187]\) \(-243090490825984/34514375\) \(-8628593750000\) \([]\) \(172032\) \(1.4982\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 64400.p1 has rank \(1\).

Complex multiplication

The elliptic curves in class 64400.p do not have complex multiplication.

Modular form 64400.2.a.p

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{7} - 2q^{9} - 2q^{11} + q^{13} - 4q^{17} - 2q^{19} + O(q^{20})\)  Toggle raw display