Properties

Label 64400.n
Number of curves $1$
Conductor $64400$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 64400.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
64400.n1 64400bf1 \([0, -1, 0, 74867, -8336863]\) \(11601902526464/14175546875\) \(-56702187500000000\) \([]\) \(483840\) \(1.9008\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 64400.n1 has rank \(0\).

Complex multiplication

The elliptic curves in class 64400.n do not have complex multiplication.

Modular form 64400.2.a.n

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{7} - 2q^{9} - 5q^{11} - q^{13} + 3q^{17} + 4q^{19} + O(q^{20})\)  Toggle raw display