Properties

Label 64400.g
Number of curves $1$
Conductor $64400$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("g1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 64400.g

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
64400.g1 64400q1 \([0, 1, 0, -208, -86412]\) \(-50/161\) \(-3220000000000\) \([]\) \(92160\) \(1.0790\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 64400.g1 has rank \(0\).

Complex multiplication

The elliptic curves in class 64400.g do not have complex multiplication.

Modular form 64400.2.a.g

sage: E.q_eigenform(10)
 
\(q - 2q^{3} + q^{7} + q^{9} - 2q^{11} - 5q^{13} + 5q^{17} + 4q^{19} + O(q^{20})\)  Toggle raw display