Properties

Label 64400.a
Number of curves $1$
Conductor $64400$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 64400.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
64400.a1 64400n1 \([0, 0, 0, 1325, 625]\) \(1029037824/596183\) \(-149045750000\) \([]\) \(107520\) \(0.83342\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 64400.a1 has rank \(2\).

Complex multiplication

The elliptic curves in class 64400.a do not have complex multiplication.

Modular form 64400.2.a.a

sage: E.q_eigenform(10)
 
\(q - 3q^{3} - q^{7} + 6q^{9} - 2q^{11} - 5q^{13} + 4q^{19} + O(q^{20})\)  Toggle raw display