Properties

Label 6400.v
Number of curves $1$
Conductor $6400$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("v1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 6400.v

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6400.v1 6400v1 \([0, 1, 0, -83, 713]\) \(-320\) \(-200000000\) \([]\) \(1920\) \(0.27940\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 6400.v1 has rank \(1\).

Complex multiplication

The elliptic curves in class 6400.v do not have complex multiplication.

Modular form 6400.2.a.v

sage: E.q_eigenform(10)
 
\(q + q^{3} + 4 q^{7} - 2 q^{9} - 3 q^{11} + q^{17} - 7 q^{19} + O(q^{20})\)  Toggle raw display