Properties

Label 6400.i
Number of curves $1$
Conductor $6400$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("i1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 6400.i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6400.i1 6400l1 \([0, -1, 0, -333, 6037]\) \(-320\) \(-12800000000\) \([]\) \(3840\) \(0.62597\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 6400.i1 has rank \(0\).

Complex multiplication

The elliptic curves in class 6400.i do not have complex multiplication.

Modular form 6400.2.a.i

sage: E.q_eigenform(10)
 
\(q - q^{3} + 4q^{7} - 2q^{9} + 3q^{11} + q^{17} + 7q^{19} + O(q^{20})\)  Toggle raw display