Show commands: SageMath
Rank
The elliptic curves in class 6384y have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 6384y do not have complex multiplication.Modular form 6384.2.a.y
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 6384y
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
6384.n3 | 6384y1 | \([0, -1, 0, -1272, 14448]\) | \(55611739513/11440128\) | \(46858764288\) | \([2]\) | \(4608\) | \(0.76287\) | \(\Gamma_0(N)\)-optimal |
6384.n2 | 6384y2 | \([0, -1, 0, -6392, -182160]\) | \(7052482298233/499254336\) | \(2044945760256\) | \([2, 2]\) | \(9216\) | \(1.1094\) | |
6384.n1 | 6384y3 | \([0, -1, 0, -100472, -12224400]\) | \(27384399945278713/153257496\) | \(627742703616\) | \([2]\) | \(18432\) | \(1.4560\) | |
6384.n4 | 6384y4 | \([0, -1, 0, 5768, -804752]\) | \(5180411077127/70976229912\) | \(-290718637719552\) | \([2]\) | \(18432\) | \(1.4560\) |