Properties

Label 6384y
Number of curves $4$
Conductor $6384$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 6384y have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1 + T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6384y do not have complex multiplication.

Modular form 6384.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{5} + q^{7} + q^{9} + 2 q^{13} - 2 q^{15} + 2 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 6384y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6384.n3 6384y1 \([0, -1, 0, -1272, 14448]\) \(55611739513/11440128\) \(46858764288\) \([2]\) \(4608\) \(0.76287\) \(\Gamma_0(N)\)-optimal
6384.n2 6384y2 \([0, -1, 0, -6392, -182160]\) \(7052482298233/499254336\) \(2044945760256\) \([2, 2]\) \(9216\) \(1.1094\)  
6384.n1 6384y3 \([0, -1, 0, -100472, -12224400]\) \(27384399945278713/153257496\) \(627742703616\) \([2]\) \(18432\) \(1.4560\)  
6384.n4 6384y4 \([0, -1, 0, 5768, -804752]\) \(5180411077127/70976229912\) \(-290718637719552\) \([2]\) \(18432\) \(1.4560\)