Properties

Label 6384t
Number of curves $4$
Conductor $6384$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 6384t have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1 - T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6384t do not have complex multiplication.

Modular form 6384.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} - q^{7} + q^{9} + 4 q^{11} - 2 q^{13} + 2 q^{15} - 2 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 6384t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6384.e3 6384t1 \([0, -1, 0, -2584, 30448]\) \(466025146777/177366672\) \(726493888512\) \([2]\) \(7680\) \(0.97530\) \(\Gamma_0(N)\)-optimal
6384.e2 6384t2 \([0, -1, 0, -18264, -922896]\) \(164503536215257/4178071044\) \(17113378996224\) \([2, 2]\) \(15360\) \(1.3219\)  
6384.e1 6384t3 \([0, -1, 0, -290424, -60144912]\) \(661397832743623417/443352042\) \(1815969964032\) \([2]\) \(30720\) \(1.6684\)  
6384.e4 6384t4 \([0, -1, 0, 3016, -2965776]\) \(740480746823/927484650666\) \(-3798977129127936\) \([2]\) \(30720\) \(1.6684\)