Show commands: SageMath
Rank
The elliptic curves in class 6384.o have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 6384.o do not have complex multiplication.Modular form 6384.2.a.o
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 6384.o
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 6384.o1 | 6384d1 | \([0, -1, 0, -4955392, 4246324048]\) | \(13141891860831409148932/4237307541832617\) | \(4339002922836599808\) | \([2]\) | \(188160\) | \(2.5506\) | \(\Gamma_0(N)\)-optimal |
| 6384.o2 | 6384d2 | \([0, -1, 0, -4283112, 5439217680]\) | \(-4242991426585187031506/3781894171664380023\) | \(-7745319263568650287104\) | \([2]\) | \(376320\) | \(2.8972\) |