Properties

Label 6384.bf
Number of curves $4$
Conductor $6384$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bf1")
 
E.isogeny_class()
 

Elliptic curves in class 6384.bf

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6384.bf1 6384k3 \([0, 1, 0, -1232, -17052]\) \(202119559492/136857\) \(140141568\) \([2]\) \(4096\) \(0.50119\)  
6384.bf2 6384k2 \([0, 1, 0, -92, -180]\) \(340062928/159201\) \(40755456\) \([2, 2]\) \(2048\) \(0.15462\)  
6384.bf3 6384k1 \([0, 1, 0, -47, 108]\) \(733001728/10773\) \(172368\) \([2]\) \(1024\) \(-0.19195\) \(\Gamma_0(N)\)-optimal
6384.bf4 6384k4 \([0, 1, 0, 328, -1020]\) \(3799448348/2736741\) \(-2802422784\) \([2]\) \(4096\) \(0.50119\)  

Rank

sage: E.rank()
 

The elliptic curves in class 6384.bf have rank \(1\).

Complex multiplication

The elliptic curves in class 6384.bf do not have complex multiplication.

Modular form 6384.2.a.bf

sage: E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} + q^{7} + q^{9} - 4 q^{11} - 6 q^{13} + 2 q^{15} + 6 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.