Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-1144386x+471132612\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-1144386xz^2+471132612z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1483124283x+21985612518294\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{7}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(596, 638)$ | $2.8838911563792701481661813536$ | $\infty$ |
$(612, -18)$ | $0$ | $7$ |
Integral points
\( \left(-774, 30276\right) \), \( \left(-774, -29502\right) \), \( \left(36, 20718\right) \), \( \left(36, -20754\right) \), \( \left(432, 7362\right) \), \( \left(432, -7794\right) \), \( \left(596, 638\right) \), \( \left(596, -1234\right) \), \( \left(612, -18\right) \), \( \left(612, -594\right) \), \( \left(684, 2574\right) \), \( \left(684, -3258\right) \), \( \left(4644, 306414\right) \), \( \left(4644, -311058\right) \)
Invariants
Conductor: | $N$ | = | \( 6378 \) | = | $2 \cdot 3 \cdot 1063$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $\Delta$ | = | $-10662541623558144$ | = | $-1 \cdot 2^{21} \cdot 3^{14} \cdot 1063 $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | $j$ | = | \( -\frac{165745346665991446425889}{10662541623558144} \) | = | $-1 \cdot 2^{-21} \cdot 3^{-14} \cdot 41^{3} \cdot 73^{3} \cdot 1063^{-1} \cdot 18353^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.1329871270028769668398963931$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.1329871270028769668398963931$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $Q$ | ≈ | $1.0028179074165748$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.102868589624617$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Mordell-Weil rank: | $r$ | = | $ 1$ | comment: Rank
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.8838911563792701481661813536$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $\Omega$ | ≈ | $0.38469467116915853371925052478$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 294 $ = $ ( 3 \cdot 7 )\cdot( 2 \cdot 7 )\cdot1 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $7$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: | $ L'(E,1)$ | ≈ | $6.6565053605458060817276492801 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
BSD formula
$\displaystyle 6.656505361 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.384695 \cdot 2.883891 \cdot 294}{7^2} \approx 6.656505361$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 98784 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $21$ | $I_{21}$ | split multiplicative | -1 | 1 | 21 | 21 |
$3$ | $14$ | $I_{14}$ | split multiplicative | -1 | 1 | 14 | 14 |
$1063$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$7$ | 7B.1.1 | 7.48.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 59528 = 2^{3} \cdot 7 \cdot 1063 \), index $96$, genus $2$, and generators
$\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2129 & 14 \\ 14903 & 99 \end{array}\right),\left(\begin{array}{rr} 14883 & 29778 \\ 0 & 57403 \end{array}\right),\left(\begin{array}{rr} 59515 & 14 \\ 59514 & 15 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 8 & 5 \\ 91 & 57 \end{array}\right),\left(\begin{array}{rr} 44647 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 29765 & 14 \\ 29771 & 99 \end{array}\right)$.
The torsion field $K:=\Q(E[59528])$ is a degree-$41146645639938048$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/59528\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 1063 \) |
$3$ | split multiplicative | $4$ | \( 1063 \) |
$7$ | good | $2$ | \( 1063 \) |
$1063$ | nonsplit multiplicative | $1064$ | \( 6 = 2 \cdot 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
7.
Its isogeny class 6378.d
consists of 2 curves linked by isogenies of
degree 7.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{7}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.8504.1 | \(\Z/14\Z\) | not in database |
$6$ | 6.0.614992408064.1 | \(\Z/2\Z \oplus \Z/14\Z\) | not in database |
$8$ | deg 8 | \(\Z/21\Z\) | not in database |
$12$ | deg 12 | \(\Z/28\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 1063 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | split | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord | ss | ord | ord | nonsplit |
$\lambda$-invariant(s) | 3 | 8 | 1 | 3 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | ? |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | ? |
An entry ? indicates that the invariants have not yet been computed.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.