Show commands: SageMath
Rank
The elliptic curves in class 6370.z have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 6370.z do not have complex multiplication.Modular form 6370.2.a.z
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 3 & 9 & 6 & 18 \\ 2 & 1 & 6 & 18 & 3 & 9 \\ 3 & 6 & 1 & 3 & 2 & 6 \\ 9 & 18 & 3 & 1 & 6 & 2 \\ 6 & 3 & 2 & 6 & 1 & 3 \\ 18 & 9 & 6 & 2 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 6370.z
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 6370.z1 | 6370v6 | \([1, 1, 1, -25923255, 50767188527]\) | \(16375858190544687071329/9025573730468750\) | \(1061849723815917968750\) | \([2]\) | \(497664\) | \(2.9825\) | |
| 6370.z2 | 6370v5 | \([1, 1, 1, -25919825, 50781305035]\) | \(16369358802802724130049/4976562500\) | \(585487601562500\) | \([2]\) | \(248832\) | \(2.6359\) | |
| 6370.z3 | 6370v4 | \([1, 1, 1, -997445, -301506605]\) | \(932829715460155969/206949435875000\) | \(24347394181257875000\) | \([2]\) | \(165888\) | \(2.4332\) | |
| 6370.z4 | 6370v2 | \([1, 1, 1, -936685, -349320413]\) | \(772531501373731009/15142400\) | \(1781488217600\) | \([2]\) | \(55296\) | \(1.8839\) | |
| 6370.z5 | 6370v3 | \([1, 1, 1, -325165, 67171747]\) | \(32318182904349889/2067798824000\) | \(243274463844776000\) | \([2]\) | \(82944\) | \(2.0866\) | |
| 6370.z6 | 6370v1 | \([1, 1, 1, -58605, -5464285]\) | \(189208196468929/834928640\) | \(98228519567360\) | \([2]\) | \(27648\) | \(1.5373\) | \(\Gamma_0(N)\)-optimal |