Show commands: SageMath
Rank
The elliptic curves in class 637.b have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 637.b do not have complex multiplication.Modular form 637.2.a.b
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrr} 1 & 9 & 3 \\ 9 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 637.b
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 637.b1 | 637b3 | \([0, -1, 1, -5749, 415463]\) | \(-178643795968/524596891\) | \(-61718299629259\) | \([]\) | \(1728\) | \(1.3331\) | |
| 637.b2 | 637b1 | \([0, -1, 1, -359, -2507]\) | \(-43614208/91\) | \(-10706059\) | \([]\) | \(192\) | \(0.23445\) | \(\Gamma_0(N)\)-optimal |
| 637.b3 | 637b2 | \([0, -1, 1, 621, -13238]\) | \(224755712/753571\) | \(-88656874579\) | \([]\) | \(576\) | \(0.78375\) |