| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 637.a1 |
637d1 |
637.a |
637d |
$1$ |
$1$ |
\( 7^{2} \cdot 13 \) |
\( - 7^{7} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$0.513244526$ |
$1$ |
|
$4$ |
$192$ |
$0.036626$ |
$110592/91$ |
$0.71571$ |
$3.60692$ |
$[0, 0, 1, 49, -86]$ |
\(y^2+y=x^3+49x-86\) |
182.2.0.? |
$[(7, 24)]$ |
$1$ |
| 637.b1 |
637b3 |
637.b |
637b |
$3$ |
$9$ |
\( 7^{2} \cdot 13 \) |
\( - 7^{15} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1638$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$1728$ |
$1.333059$ |
$-178643795968/524596891$ |
$1.15023$ |
$6.10029$ |
$[0, -1, 1, -5749, 415463]$ |
\(y^2+y=x^3-x^2-5749x+415463\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.2, 63.24.0-9.a.1.2, 78.8.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 637.b2 |
637b1 |
637.b |
637b |
$3$ |
$9$ |
\( 7^{2} \cdot 13 \) |
\( - 7^{7} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1638$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$192$ |
$0.234447$ |
$-43614208/91$ |
$0.87141$ |
$4.53322$ |
$[0, -1, 1, -359, -2507]$ |
\(y^2+y=x^3-x^2-359x-2507\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.1, 63.24.0-9.a.1.1, 78.8.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 637.b3 |
637b2 |
637.b |
637b |
$3$ |
$9$ |
\( 7^{2} \cdot 13 \) |
\( - 7^{9} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$1638$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$576$ |
$0.783752$ |
$224755712/753571$ |
$0.95798$ |
$5.02934$ |
$[0, -1, 1, 621, -13238]$ |
\(y^2+y=x^3-x^2+621x-13238\) |
3.12.0.a.1, 21.24.0-3.a.1.1, 78.24.0.?, 117.36.0.?, 182.2.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 637.c1 |
637a1 |
637.c |
637a |
$2$ |
$7$ |
\( 7^{2} \cdot 13 \) |
\( - 7^{4} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.48.0.3 |
7B.1.2 |
$364$ |
$96$ |
$2$ |
$0.685355679$ |
$1$ |
|
$2$ |
$60$ |
$-0.146044$ |
$-56723625/13$ |
$1.28311$ |
$3.97068$ |
$[1, -1, 0, -107, 454]$ |
\(y^2+xy=x^3-x^2-107x+454\) |
7.48.0-7.b.1.2, 52.2.0.a.1, 364.96.2.? |
$[(6, -2)]$ |
$1$ |
| 637.c2 |
637a2 |
637.c |
637a |
$2$ |
$7$ |
\( 7^{2} \cdot 13 \) |
\( - 7^{4} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.48.0.6 |
7B.1.5 |
$364$ |
$96$ |
$2$ |
$4.797489755$ |
$1$ |
|
$2$ |
$420$ |
$0.826911$ |
$11397810375/62748517$ |
$1.05408$ |
$5.12361$ |
$[1, -1, 0, 628, -17823]$ |
\(y^2+xy=x^3-x^2+628x-17823\) |
7.48.0-7.b.1.1, 52.2.0.a.1, 364.96.2.? |
$[(104, 1027)]$ |
$1$ |
| 637.d1 |
637c1 |
637.d |
637c |
$2$ |
$7$ |
\( 7^{2} \cdot 13 \) |
\( - 7^{10} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.48.0.6 |
7B.1.5 |
$364$ |
$96$ |
$2$ |
$8.826746643$ |
$1$ |
|
$0$ |
$420$ |
$0.826911$ |
$-56723625/13$ |
$1.28311$ |
$5.77893$ |
$[1, -1, 0, -5252, -145223]$ |
\(y^2+xy=x^3-x^2-5252x-145223\) |
7.48.0-7.b.1.1, 52.2.0.a.1, 364.96.2.? |
$[(4776/7, 158761/7)]$ |
$1$ |
| 637.d2 |
637c2 |
637.d |
637c |
$2$ |
$7$ |
\( 7^{2} \cdot 13 \) |
\( - 7^{10} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.48.0.3 |
7B.1.2 |
$364$ |
$96$ |
$2$ |
$1.260963806$ |
$1$ |
|
$2$ |
$2940$ |
$1.799866$ |
$11397810375/62748517$ |
$1.05408$ |
$6.93186$ |
$[1, -1, 0, 30763, 6051758]$ |
\(y^2+xy=x^3-x^2+30763x+6051758\) |
7.48.0-7.b.1.2, 52.2.0.a.1, 364.96.2.? |
$[(-38, 2216)]$ |
$1$ |