Properties

Label 63580d
Number of curves $4$
Conductor $63580$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 63580d have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 63580d do not have complex multiplication.

Modular form 63580.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} - q^{5} + 4 q^{7} + q^{9} + q^{11} - 4 q^{13} - 2 q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 63580d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
63580.m4 63580d1 \([0, -1, 0, -13101, 569726]\) \(643956736/15125\) \(5841291698000\) \([2]\) \(186624\) \(1.2352\) \(\Gamma_0(N)\)-optimal
63580.m3 63580d2 \([0, -1, 0, -28996, -1064280]\) \(436334416/171875\) \(1062053036000000\) \([2]\) \(373248\) \(1.5818\)  
63580.m2 63580d3 \([0, -1, 0, -128701, -17504334]\) \(610462990336/8857805\) \(3420894070016720\) \([2]\) \(559872\) \(1.7845\)  
63580.m1 63580d4 \([0, -1, 0, -2051996, -1130707480]\) \(154639330142416/33275\) \(205613467769600\) \([2]\) \(1119744\) \(2.1311\)