Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, -1, 0, -2051996, -1130707480]) # or

sage: E = EllipticCurve("63580d4")

gp: E = ellinit([0, -1, 0, -2051996, -1130707480]) \\ or

gp: E = ellinit("63580d4")

magma: E := EllipticCurve([0, -1, 0, -2051996, -1130707480]); // or

magma: E := EllipticCurve("63580d4");

$$y^2 = x^{3} - x^{2} - 2051996 x - 1130707480$$

## Mordell-Weil group structure

$$\Z\times \Z/{2}\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(-\frac{4158196816571}{5028795396}, -\frac{4218383737107323}{356611996711944}\right)$$ $$\hat{h}(P)$$ ≈ 25.976353886095005

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-827, 0\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-827, 0\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)  magma: Conductor(E); Conductor: $$63580$$ = $$2^{2} \cdot 5 \cdot 11 \cdot 17^{2}$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$205613467769600$$ = $$2^{8} \cdot 5^{2} \cdot 11^{3} \cdot 17^{6}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{154639330142416}{33275}$$ = $$2^{4} \cdot 5^{-2} \cdot 7^{3} \cdot 11^{-3} \cdot 17^{3} \cdot 179^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$25.9763538861$$ sage: E.period_lattice().omega()  gp: E.omega  magma: RealPeriod(E); Real period: $$0.126140751835$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$12$$  = $$1\cdot2\cdot3\cdot2$$ sage: E.torsion_order()  gp: elltors(E)  magma: Order(TorsionSubgroup(E)); Torsion order: $$2$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form 63580.2.a.m

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

magma: ModularForm(E);

$$q + 2q^{3} - q^{5} + 4q^{7} + q^{9} + q^{11} - 4q^{13} - 2q^{15} - 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 1119744 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$9.83003042734$$

## Local data

This elliptic curve is not semistable.

sage: E.local_data()

gp: ellglobalred(E)

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$1$$ $$IV^{*}$$ Additive -1 2 8 0
$$5$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2
$$11$$ $$3$$ $$I_{3}$$ Split multiplicative -1 1 3 3
$$17$$ $$2$$ $$I_0^{*}$$ Additive 1 2 6 0

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X6.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right)$ and has index 3.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B
$$3$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add ordinary nonsplit ordinary split ordinary add ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary - 3 1 1 2 1 - 1 1 3 1 1 1 1 1 - 1 0 0 0 0 - 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3 and 6.
Its isogeny class 63580.m consists of 4 curves linked by isogenies of degrees dividing 6.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{-51})$$ $$\Z/6\Z$$ Not in database
$$\Q(\sqrt{11})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database
4 4.0.1271600.1 $$\Z/4\Z$$ Not in database
$$\Q(\sqrt{11}, \sqrt{-51})$$ $$\Z/2\Z \times \Z/6\Z$$ Not in database
6 6.2.442170000.1 $$\Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.