Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-668115x+426987666\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-668115xz^2+426987666z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-668115x+426987666\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(3745/9, 401408/27)$ | $2.2051048250603362148996840169$ | $\infty$ |
| $(4057, 253952)$ | $3.3669840523670860195392261305$ | $\infty$ |
Integral points
\((-161,\pm 23030)\), \((4057,\pm 253952)\)
Invariants
| Conductor: | $N$ | = | \( 63504 \) | = | $2^{4} \cdot 3^{4} \cdot 7^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-59674754937564168192$ | = | $-1 \cdot 2^{33} \cdot 3^{10} \cdot 7^{6} $ |
|
| j-invariant: | $j$ | = | \( -\frac{1159088625}{2097152} \) | = | $-1 \cdot 2^{-21} \cdot 3^{2} \cdot 5^{3} \cdot 101^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4847764782992969894983713624$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.096836017345063048634241494885$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.1123490200903752$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.816742928214439$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $7.1243444097333033283375855190$ |
|
| Real period: | $\Omega$ | ≈ | $0.17642611450546852916562823715$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2^{2}\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $10.055363220864018981273000115 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 10.055363221 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.176426 \cdot 7.124344 \cdot 8}{1^2} \\ & \approx 10.055363221\end{aligned}$$
Modular invariants
Modular form 63504.2.a.bi
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1088640 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{25}^{*}$ | additive | -1 | 4 | 33 | 21 |
| $3$ | $1$ | $IV^{*}$ | additive | -1 | 4 | 10 | 0 |
| $7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2G | 8.2.0.1 |
| $3$ | 3B | 3.4.0.1 |
| $7$ | 7B | 7.8.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \), index $768$, genus $21$, and generators
$\left(\begin{array}{rr} 255 & 278 \\ 56 & 159 \end{array}\right),\left(\begin{array}{rr} 281 & 392 \\ 112 & 393 \end{array}\right),\left(\begin{array}{rr} 1 & 426 \\ 42 & 253 \end{array}\right),\left(\begin{array}{rr} 1 & 216 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 462 & 1 \end{array}\right),\left(\begin{array}{rr} 209 & 462 \\ 273 & 293 \end{array}\right),\left(\begin{array}{rr} 85 & 42 \\ 189 & 43 \end{array}\right),\left(\begin{array}{rr} 337 & 168 \\ 336 & 169 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 168 & 1 \end{array}\right),\left(\begin{array}{rr} 22 & 321 \\ 189 & 169 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 420 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 168 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 431 & 102 \\ 0 & 503 \end{array}\right),\left(\begin{array}{rr} 463 & 282 \\ 420 & 295 \end{array}\right)$.
The torsion field $K:=\Q(E[504])$ is a degree-$15676416$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/504\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 3969 = 3^{4} \cdot 7^{2} \) |
| $3$ | additive | $4$ | \( 56 = 2^{3} \cdot 7 \) |
| $7$ | additive | $26$ | \( 1296 = 2^{4} \cdot 3^{4} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3, 7 and 21.
Its isogeny class 63504co
consists of 4 curves linked by isogenies of
degrees dividing 21.
Twists
The minimal quadratic twist of this elliptic curve is 162c4, its twist by $28$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-21}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.648.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.3359232.4 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.2.1296243648.4 | \(\Z/3\Z\) | not in database |
| $6$ | 6.6.3024568512.1 | \(\Z/7\Z\) | not in database |
| $6$ | 6.0.6913299456.10 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $12$ | 12.0.448252719505312813056.3 | \(\Z/21\Z\) | not in database |
| $18$ | 18.0.2743665675837942906626791025147904.8 | \(\Z/9\Z\) | not in database |
| $18$ | 18.2.58531534417876115341371541869821952.1 | \(\Z/6\Z\) | not in database |
| $18$ | 18.6.113331393166869930408589695909888.1 | \(\Z/14\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | ss | add | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | - | 2,6 | - | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| $\mu$-invariant(s) | - | - | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.