Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+22094100x+29698174800\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+22094100xz^2+29698174800z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+22094100x+29698174800\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-106575686084/89472681, 34798654035993736/846322089579)$ | $24.225430009457944942382430956$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 6350400 \) | = | $2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-1071270026191633121280000$ | = | $-1 \cdot 2^{21} \cdot 3^{10} \cdot 5^{4} \cdot 7^{12} $ |
|
| j-invariant: | $j$ | = | \( \frac{1047929175}{941192} \) | = | $2^{-3} \cdot 3^{2} \cdot 5^{2} \cdot 7^{-6} \cdot 167^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.2982869259236203825825061078$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.16637846414541243512564258795$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.977279040933613$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.980206437538609$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $24.225430009457944942382430956$ |
|
| Real period: | $\Omega$ | ≈ | $0.056954188140154422892405617605$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 2\cdot3\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $16.556876382417728839656489320 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 16.556876382 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.056954 \cdot 24.225430 \cdot 12}{1^2} \\ & \approx 16.556876382\end{aligned}$$
Modular invariants
Modular form 6350400.2.a.bxd
For more coefficients, see the Downloads section to the right.
| Modular degree: | 644972544 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{11}^{*}$ | additive | -1 | 6 | 21 | 3 |
| $3$ | $3$ | $IV^{*}$ | additive | -1 | 4 | 10 | 0 |
| $5$ | $1$ | $IV$ | additive | -1 | 2 | 4 | 0 |
| $7$ | $2$ | $I_{6}^{*}$ | additive | -1 | 2 | 12 | 6 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2G | 8.2.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 168 = 2^{3} \cdot 3 \cdot 7 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 83 & 42 \\ 105 & 125 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 163 & 6 \\ 162 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 41 & 42 \\ 147 & 125 \end{array}\right),\left(\begin{array}{rr} 95 & 0 \\ 0 & 167 \end{array}\right),\left(\begin{array}{rr} 90 & 119 \\ 119 & 69 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right)$.
The torsion field $K:=\Q(E[168])$ is a degree-$9289728$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/168\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 99225 = 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
| $3$ | additive | $4$ | \( 1120 = 2^{5} \cdot 5 \cdot 7 \) |
| $5$ | additive | $14$ | \( 254016 = 2^{6} \cdot 3^{4} \cdot 7^{2} \) |
| $7$ | additive | $32$ | \( 129600 = 2^{6} \cdot 3^{4} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 6350400.bxd
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 28350.u2, its twist by $-168$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.