Show commands for:
SageMath
sage: E = EllipticCurve("h1")
sage: E.isogeny_class()
Elliptic curves in class 63210h
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
63210.k3 | 63210h1 | [1, 1, 0, -3357, 73389] | [2] | 55296 | \(\Gamma_0(N)\)-optimal |
63210.k2 | 63210h2 | [1, 1, 0, -4337, 25761] | [2, 2] | 110592 | |
63210.k4 | 63210h3 | [1, 1, 0, 16733, 223819] | [2] | 221184 | |
63210.k1 | 63210h4 | [1, 1, 0, -41087, -3200889] | [2] | 221184 |
Rank
sage: E.rank()
The elliptic curves in class 63210h have rank \(1\).
Complex multiplication
The elliptic curves in class 63210h do not have complex multiplication.Modular form 63210.2.a.h
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.