Properties

Label 6300q
Number of curves $1$
Conductor $6300$
CM no
Rank $0$

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("q1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 6300q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
6300.bf1 6300q1 [0, 0, 0, 7200, -715500] [] 20160 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 6300q1 has rank \(0\).

Complex multiplication

The elliptic curves in class 6300q do not have complex multiplication.

Modular form 6300.2.a.q

sage: E.q_eigenform(10)
 
\( q + q^{7} + 5q^{11} + 3q^{13} - q^{17} + 6q^{19} + O(q^{20}) \)